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One of the well deserved common complaints about C++ is the low quality of compiler
errors. Both GCC and Clang made a lot of progress to improve the situation in the past 10
years, but templated code is one area where they can't really help.
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https://itnext.io/c-20-concepts-complete-guide-42c9e009c6bf

Also available in video form: https://www.youtube. com/watch?v=1So7onMFxJM

For all the examples and bash scripts, visit:
https://github.com/HappyCerberus/article-cpp20-concepts

A function that doesn’t like an int.

The difficulty with templated code is that compilation errors physically occur inside the im-
plementation code. This can result in confounding error messages.
Take this straightforward example:

function_that_doesnt_like_int.cc
#include <string>
void function_without_concept(const auto& x) {

std::string v = x;

}

int main() {
function_without_concept(1);

W X N O U A W N =

}

The error is reported inside of the function because the invalid operation here is the as-
signment of int toa string.
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function_that_doesnt_like_int.cc:4:14: error: no viable conversion from 'const
— int' to 'std::string' (aka 'basic_string<char>')
std::string v = Xx;

function_that_doesnt_like_int.cc:8:2: note: in instantiation of function template
«— specialization 'function_without_concept<int>' requested here
function_without_concept (1) ;

- shortened -
We don't have to dig too deep with a shallow error like this one, but we still need to look

at the implementation to fully understand that this function only accepts types that can be
assigned to a string.

Using concepts

So let's have a look at how we can improve the situation by using concepts. We will rely on
concepts that are defined in the standard library.
For a complete overview of predefined concepts in the standard library, have a look at:

* <concepts>
- https://en.cppreference.com/w/cpp/concepts
* <iterator>

- https://en.cppreference.com/w/cpp/iterator#C.2B.2B20_iterator_concepts
- https://en.cppreference.com/w/cpp/iterator#Algorithm_concepts_and_utilities

* <ranges>
- https://en.cppreference.com/w/cpp/ranges#Range_concepts

Let's start with our simple function that expects a parameter convertible to a string.

function_with_concept.cc

1 #include <string>
2 #include <concepts>

4 | void func_with_auto_inline(const std::convertible_to<std::string> auto& x) {

5 std::string v = Xx;

6 |

7

g | int main() {

9 func_with_auto_inline(1);
10 |}

This time we get a longer but also more descriptive error.
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function_with_concept.cc:9:5: error: no matching function for call to
— 'func_with_auto_inline'
func_with_auto_inline(1);

function_with_concept.cc:4:6: note: candidate template ignored: constraints not
— satisfied [with x:auto = int]
void func_with_auto_inline(const std::convertible_to<std::string> auto& x) {

function_with_concept.cc:4:39: note: because 'std::convertible_to<int,
— std::string>' evaluated to false
void func_with_auto_inline(const std::convertible_to<std::string> auto& x) {

- shortened -

The most important part is that we are presented with an no matching function for call

error that explains why overload resolution did not consider our function.

You might notice in the output that std::convertible_to actually takes two parameters.
With inline syntax, the first parameter is automatically filled in from context. We can see that
more clearly when considering all the other syntax variants:

builtin_concepts.cc

1 | void func_with_auto_inline(const std::convertible_to<std::string> auto& x) {

2 std::string v = x;

3 |}

4

5 | void func_with_auto_postfix(const auto& x)

6 requires std::convertible_to<decltype(x), std::string> {
7 std::string v = Xx;

8 |}

10 | template <std::convertible_to<std::string> T>
11 | void func_with_template_inline(const T& x) {

12 std::string v = x;

13 |}

14

15 | template <typename T>

16 requires std::convertible_to<T, std::string>
17 | void func_with_template_postfix(const T& x) {

18 std::string v = x;

19 |}

We can omit the first parameter when using the inline syntax (either with auto or a tem-
plate). When using the postfix requires-based syntax, we need to supply it either through
decltype OF by passing in the template parameter.

Concepts can also be combined using logical operators. Here is a convoluted example of
a function template that accepts integrals or invocable that returns an integral. Notice that
we also use a concept inside of an constexpr conditional statement.



combine_concepts.cc

1 #include <string>
2 | #include <concepts>
3 | #include <iostream>

5 template <typename T>

6 requires std::integral<T> ||

7 (std: :invocable<T> &&

8 std: :integral<typename std::invoke_result<T>::type>)
9 | void function(const T& x) {

10 if constexpr (std::invocable<T>) {

1 std::cout << "Result of call is " << x() << "\n";
12 } else {

13 std::cout << "Value is " << x << "\n";

14 }

15 |}

16

17 int main() {

18 function(1); // OK, integral

19 function([]1() { return 2; }); // OK, invocable, returns integral
20 function(2.0); // Fails

21 }

We are starting to compromise readability with complex formulas like this one, so let's
look at how to write our own concepts.

Writing concepts

Writing a new concept follows the following syntax:

1 | template <typename T>
2 concept Name = constraint_expression;

Constraint expression can contain constexpr boolean expressions, conjunction/disjunction
of other concepts and requires blocks. So for our previous example, we could construct a

boolean expression using C++11 type traits or construct a compound concept from C++20
standard library concepts.

maybe_invocable.cc

1 template <typename T>

2 | concept maybe_invokable_integral_vl = std::is_integral<T>::value ||
3 (std: :is_invocable<T>: :value &&

4 std::is_integral<typename std::invoke_result<T>::type>::value);

6 | template <typename T>

7 concept maybe_invokable_integral_v2 = std::integral<T> ||
8 (std: :invocable<T> &&

9 std: :integral<typename std::invoke_result<T>::type>);




Requires expression

Let's dig a bit deeper and go over the different elements used inside an requires expression.

The simplest test we can do is to test the validity of an expression. In the following exam-
ple, we also use the optional parameter list to generate arguments. We can then use these
arguments inside the expression. Here we test whether the type supports the binary plus
operator.

simple.cc

1 template <typename T>
2 | concept addable = requires (T a, T b) {
3 a+tb;

4 | };

6 | void function(addable auto x) {}
7 | struct X {3};

9 | int main() {
10 function(l); // 0K
1 function(X{}); // Fails

We can also test for type validity. The referred type can be a template and therefore used
to check for substitution failures.

type.cc

1 #include <concepts>

3 | template <typename T>

4 | concept type_test = requires {

5 typename T::ElementType; // ElementType member type must exzist
6 | };

s | template <std::integral T>
9 struct S;

11 | template <typename T>
12 | concept template_test = requires {

13 typename S<T>; // checks whether S<T>
14 // s a valid template substitution
15|}

17 | void functionl(type_test auto x) {}
18 | void function2(template_test auto x) {}

20 | struct X { using ElementType = int; };

2 | int main() {

23 function1(X{}); // 0K

24 function1(1); // Fails
25 function2(1); // OK

26 function2(X{}); // Fails
27 | }




Compound expressions allow us to constraint the result of an expression.

compound_return_type.cc
1 #include <concepts>
3 | template <typename T>
4 | concept invoke_integral = requires (T a) {
5 { a() } -> std::integral;
6 | };

s | template <invoke_integral T>
9 | void function(const T& f) {};

1 | int main() {

12 function([J O{ return 1; }); // OK

13 function([] ){ return 1.0; }); // Fail: doesn't return integral
14 function(1); // Fail: 1() %is not a valid ezpression

15 |}

With compound expressions, we can also require the expression to be non-throwing.
compound_noexcept.cc
1 template <typename T>

concept assignment_cant_throw = requires (T a, T b) {
{ a = b } noexcept;

A W oN
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6 | struct X {
7 X& operator = (const X& lhs) noexcept { return *this; }

8 | };

10 | struct Y {
1 Y& operator = (const Y& lhs) { return *this; }
12 | ks

14 | template <assignment_cant_throw T> struct Test {};

16 | int main() {

17 Test<X> a; // OK
18 Test<Y> b; // Fatils
19 3

Lastly, we can nest requires expressions. This is useful for referring to other concepts or
to construct nested constexpr booOlean expressions.

Note that if you list a concept inside a requires block without prefixing it with requires, it
will be treated as an expression and only checked for validity (GCC already warns about this).



1 template <typename T>

2 | concept x = requires (T a) {

3 requires sizeof(a) >= 4;

requires std::integral<T>;

std::integral<T>; // probably not what you meant

o un A

I3

How a specialization is selected

In all the previous examples, we always had a single specialization, which either matched or
didn’t. Concepts allow us to provide a set of specializations. The compiler will first determine
feasible specialisations and then the specialization with the most specific constraint.

To determine which constraint is the most specific, each will be expanded until it is a list of
atoms in a conjunction/disjunction formula. Note that a requires expression is considered
an atom here, no matter how complex, which has implications on organising and writing
your concepts if you want to take advantage of this behaviour.

In the following example, while the nas_x concept may seem to be a subset of the coord
concept, however, based on the expansion rules, both of these constraints have are a singu-
lar atom, and because these atoms are not identical, these two concepts are unordered.

atom.cc

1 template <typename T>
concept has_x = requires (T v) {
V.X;

AW oN
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6 | template <typename T>
7 | concept coord = requires (T v) {

8 V.X;
9 vV.y;
10 |}

12 | void function(has_x auto x) {}
13 | void function(coord auto x) {}

15 | struct X {

16 int x;

17 | ks

18

19 | struct Y {

20 int x;

21 int y;

2 | };

23

24 | int main() {

25 function(X{}); // OK, only one viable candidate
26 function(Y{}); // Fails, ambiguous
27 }

However, it is possible to rewrite these concepts so they are comparable and the coora
concept subsumes the nas_x concept.



ordered.cc

template <typename T>
concept has_x = requires (T v) {
V.X;

8

template <typename T>
concept coord = has_x<T> && requires (T v) {

V.y;

W N O U A W N =
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1 void function(has_x auto x) {}
12 | void function(coord auto x) {}

14 | struct X {

15 int x;

16 | s

17

18 | struct Y {

19 int x;

20 int y;

21 | };

2

2 | int main() {

24 function(X{}); // OK, only one viable candidate
2 function(Y{}); // 0K, coord is more specific
6 | }

So if you are designing a library that needs to take advantage of this behaviour, take care
when designing your concepts.
A good rule of thumb for two concepts A and B is:

* A= (X1 ... XM); B=Yea (X1 ... XN); Bisconsidered to be more specific than A

* A= (X1 ...XM); B=Y || (x1 ... x0; Aisconsideredto be more specific than B

Thank you for reading

Thank you for reading this article. Did you enjoy it? If yes, pass it along to coleagues or
classmates that might benefit from reading it.



